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ABSTRACT

An underway vibration survey was performed on USS OKINAWA (LPH-3)
to estabiish critical frequencies and determine maximum vibratory levels of the
hull, island, radar mast, main propulsion machinery, and Mark 63 Director 2.
Free route (straight course) steady-speed runs were made in addition to hard
turns, crashback maneuvers, and anchor drop tests. Large magnifications of
athwartship vibration motion of the island-radar mast structure relative to the
hull were noted for speeds above 85 rpm. The superstructure of OKINAWA
influences the island and radar mast vibrations whose levels are important
for the successful operation of electronic equipment mounted on these
structures. Because of the characteristics of the superstructure, the ratio
of the higher flexural hull frequencies to the fundamentai frequency differs
from that found on a number of other class vessels.

ADMINISTRATIVE INFORMATIO!

This assignment was authorized by Burean of Ships letters Serial 436-189 of 20 July
1962 and Serial 436-247 of 8 October 1962. Funds were provided under Project SCN 30013.

Preiiminary results of the vibration survey conducted on OKINAWA including measure-
ménts of the hull, isiand, and ¢ =4n director mounted on the island were forwarded to the
Bureau of Ships as enciosure (i) tc David Taylor Model Basin letter Serial 7-156 of 17 May
1963 (Technical Note SML-760-54). More detailed analysis of the island vibration was re- ‘
ported in David Taylor Model Basin letter Serial 7-221 of 15 July 1963. Vibration levels of !
the mast and fantail were given in References 1 and 2,* respectively.

INTRODUCTION

The USS OKINAWA (LPH-3) is an amphibious assault carrier, similar to a Mariner
Class of ship, constructed from new plans. During 25 March through 29 March 1963, an under-
way vibration survey of OKINAWA was made by the Model Basin at the request of the Bureau
of Ships because the vibration levels measured by Philadelphia Naval Shipyard during
builder’s trials in May 1962 were considered excessive, particularly on the island structure.
Prior to the vibration survey, several minor structural changes were made on the ship, e.g.,
a gun director pedestal on the island was lowered and its base relocated aft for support hy
existing stachions. In addition, the flexible coupling connecting the main condenser intake
pipe with the sea chest valve was stifiened by three brackets across the coupling.

7 od

*
References arec listed on page 36.
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The broad objectives of the underway trial on OKINAWA were:

1. To determine the vibratory characteristics of the hull, island, radar mast, machinery,
and weapon system due to variahle force excitation.

2. To collect data {rom which damping of the hull could be determired.

3. To provide information for use in determining specifications and design criteria for
the LPH Class.

In order to meet the above objectives, vibrations were recorded on OKINAWA during
stendy-state speed runs, ship maneuvers, and anchor drop tests. Measurements were concen-
teaiedt on the hull, main propulsion machinery, island, radar mast, and the Mark 63 Director 2
mouried on the island. The data were recorded both on a string oscillograph and on magnetic
tapes.

Prelisrinary analysis of the vibration data (reported by letter) emphasized the measure-
ments obtained at the director; its relocation (the base had been mounted on the island 06
level prior {0 the trial) had little effect on the vibration of the director at blade rate. The
data. further ind:cated that vibration levels in the athwartship direction at the top of the
island (07 level) were magnified up to a factor of 8§ relative to the bottom of the island (03
level) for speed:s above 85 rpm. Maximum blade frequency amplitudes at the fantail were
given and compared with levels measured by Philadelphia Naval Shipyard during builder’s
trial 5.

The more detailed vibration analysis reported ir a later letter showed that the rather
tarpe magnification of vibration motions of the island relative to the hull suggested one or
both of the following possible causes: (1) the island structure above the main deck was too
compliant in the athwartship direction or (2) the attachment of the island structure to the
flight deck or the rigidity of the flight deck-hull combination in the vicinity of the island
was insufficient. Vibration calculations of the main propulsion system revealed that the
replacement of the four-bladed propeller with either a five-bladad or three-bladed propeller
could not be expected to solve the problem of excessive island-radar mast vibration on
OKINAWA. Consequently, a redesign study of the island-radar mast structure was initiated
at the Bureau of Ships. This led to a recommended change in the topmast for all ships of the
LPH-2 Class. (This information was presented in Bureau of Ships letter Serial 442-M9 of
18 February 1964.) The present summary report does not include any further analytical in-
formation on the island-radar mast structure.

The maximum levels of vibration were determined by a visual analysis of oscillogram
records taken during steady-speed runs and ship maneuvers, such as crashbacks and hard
turns. The vibration levels of the radar mast were reported in Reference 1. In Reference 2,
a maximum value analysis was applied to determire the maximum vertical and athwartship
vibrations at blade frequency for the hull of OKINAWA during steady-speed runs.




The present report summarizes the maximum vibrations measured during ship mareuvers. -

The measured vertical and athwartship hull frequencies are compared with the hull vibration
calculations reported in Reference 3, and the longitudinal vibrations cof the main propulsion
machinery are compared with calculatinns of the propeller-shafting-machinery system. The
significance of superstructure vibration on the LPH-2 Class is discussed. and several rec-
ommendations are made which provide an input to a program leading to the in.proved design

of superstructures.

CHARACTERISTICS OF SHIP AND PROPELLER

The main ship design characteristics of OKINAWA are as follows:

Length (overall) Loa . 602.3 ft

Length (between perpendiculars) Lgp 956.0 ft

Beam (extreme) 8 84.2 ft »
Depth (to main deck, mofded) D 47.2

Draft (full load) H 26.1 ft

Disnlacement (design) Displacement 17,983 tons

Maximum shaft tevolutions 118 pm

The ship appendages consist of cne rudder and two bilge keels. The main propulsion
machinery consists of a cross-compound, two-casing wurbine and condenser. The turbine is
cennected o the shait by a double reduction gear.

Figure 1 shows the propeller and adjacent stern area of the ship. The propeller char-

acteristics are as follows:

Numter of propeilers 1
Diameter= 9 =2R 210 ft
Pitch at 0.7R 25 ft
Pitch ratio {at 0.7R) 1.072
Ares ratio (expanded) 0.528
Mean width ratio (MWR) 0.26
Number of blades 4
Direction of rotation R.H,
Material Manganese bronze
Weight 46,010 1b
'
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PROCEDURE
INSTRUMENTATION

Velocity pickups (Consolidated Type 4-102A), linear integrating amplifiers (Consoli-
dated System D Type 1-112C), a 36-channel string oscillograph (Consolidated Type 5-119),

and two 14-channel tape recorders {Consolidated Type PR-2300 and Type PR-3300) were used
to obtain vibratory displacements; see Figure 2.

Velocity pickup signals were integrated to give an output signal proportions! to the
vibratory displacements. The signals from the gages were recorded on both the oscillograph
and tape recorders.

The measuring system was calibrated in the laboratory prior to the underway survey,
after the equipment was installed on the ship prior to the trials, and at periodic intervals
during the trials. The laboratory calibration was evaluated and a conversion factor curve
(Figure 3) obtained. Calibration on board the ship consisted of voltage signals simulating
the output of the velocity gages. A calibration signal of 206 mv peak to peak at 15 cps was
used to simulate the output of the velocity gages when subjected to 20 mils (0.020 in.) peak
to peak displacement at 15 cps.

The gage locations are shown in Figures 4, 5, and 6 and are listed in Table 1. Only
12 channels of data could be recorded simultaneously on each tape recorder since two chan-
nels of each recorder were used for shaft rpm and voice identification. The vibrations were
therefore recorded in two phases; the vertical hull gage at Frame 135 was a common refer-
ence between the phases. The first phase consisted of all the gages on the hull, island, and
mast, and two main propulsion machinery components (thrust bearing and thrust-bearing
foundation); the second phase consisted of the gazcs on the gun director, three roving gages

placed at various positions, and two machinery components (condenser and flexible coupling).
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Figure 5 — Gage Locations on Main Propulsion Machinery
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TABLE 1

Measurement Locations

Position o ]
No.* Frame | Deck Description of Location
HI(Y) 135 1 Centerline above propelier
H2(A) 135 | Centerline above propeller
H3(A) 135 02 Centerline above propeller
H4(A) 135 3 Centerline above propeller
H(V) 67 i 1 Port
1 Starboard
H6(A) 67 1 Centerline
HI(A) 67 5 Centerline
H8(V) 13 1 Centerline
H9(A) 13 1 Centerline
HIO(V) 13 5 Centerline
TBII(L) Thrust bearing
‘ TB12(L) Thrust-bearing foundation
TBI3(L) Flexible coupling
TBI14(L) Condenser
SI(VA) 67 03 At base main mast
S2(VAL) 67 07 At mast - 07 level
Al(AL) 67 At mast - 30 ft above 07 level
A2(AL) 67 At topmast — 58 ft above 07 level
A3(VAL) 63 06 Base Mark 63 Director 2
A4(VAL) 63 Top pedestal Mark 63 Director 2
AS(VAL) 63 Eyepiece Mark 63 Director 2
*The letters V, A, L. in the parentheses stand for vertical,
athwartship, and longitudinal direction, respectively.
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TRIAL CONDITIONS

The trials were conducted enroute from Norfolk, Virginia to Guantanamo Bay, Cuba at
speeds ranging from 50 to 118 rpm, in water depths of more than 500 ft, and a State 3 to 4 sea.
Several helicopters, jeeps, and a number of military personnel were on hoard, and the ship
had a displacement of 17,700 tons (98 percent of design displacement).

Conversations with ship personnel prior to the trial revealed that noticeable vibrations
were produced in the stern areas ior several decks above a laundry extractor (washer), located
on the second deck in the stern. As a result, the extractor was turned off during the trials so
that the only sources of vibration excitation were due to propeller-excited forces and wave
motion.

Hull transient vibrations were produced by dropping and snubbing the anchor with the
ship stationary (zero speed). The subsequent motions were recorded on both the oscillog-aph

and the magnetic-tape recorders.

DATA ANALYSIS

Manual (visual) procedures* were used to obtain the maximum blade frequency ampli-
tudes of vertical and athwartship vibration measured at the fantail (Frame 135, main deck
centerline) during steady-speed runs. The amplitudes of shait frequency vibration compon-
ents (which were excited only at higher ship speeds) could not easily be determined by
visual analysis of the oscillogram records. Hence, electronic analysis of the tape records
was used to determine the major components of fantail vibration excited during steady-speed
runs.

The average smplitudes of propeller-excited fantail vibration were obtained by an
analysis of the tape recordings on a Technical Products Company TP-625 Analyzer System.
The tape records obtained during the steady-speed runs were transferred to a loop tape for
analysis at a speed 32 times faster than the recording speed. By using a 5-cps bandwidth
filter and increasing the loop speed, an ‘‘effective’ filter bandwidth of 5/82 cps was
achieved.

Values of damping coefficients for hull vertical vibration were derived from the anchor
drop tests. A visual analysis of oscillogram records was used to obtain values for the first
two vertical hull modes. Since estimates of hull damping and modes are increasingly diffi-
cult to obtain from oscillograph records for modes above the fundamental hull frequency, an

electronic analysis of the tape records was alse performed.
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TEST RESULTS
FREE ROUTE (STRAIGHT 'OURSE) TESTS

Measurements of the vibrations of the hull, island, and radar mast during steady-speed
~uns are summarized in Table 2. Vibrations measured on the main propulsion machinery and
Mark 63 Director 2 are summarized in Table 3. The measured natural frequencies of the hull
are compared with theoretical frequencies in Table 4.

The maximum blade frequency amplitudes of vertical and athwartship vibration measured
at the fantail (Frame 135, main deck centerline) during steady-speed runs versus rpm are shown
in Figures 7 and 8, respectively. The accelerations corresponding to the fantail vertical and
athwartship maximum vibrations during steady-speed runs are given in Figures 9 and 10,
respectively.

The average amplitudes of shaft frequenrcy, blade frequency, and the first two harmonics
of vertical and athwartship vibration at blade frequency at the fantail as determined by narrow
bandwidth filtering are shown in Figures 11 and 12, respectively.

Maximum amplitudes of blade frequency and double blade frequency vibrations of the
island-radar mast structure determined from visual analysis of the oscillogram records are
shown in Figures 138 through 15. The maximum amplitudes of athwartship blade frequency
vibration of the island-radar mast are summarized in Figure 15a. The athwartship vibration
amplitudes at the topmast (58 ft above island 07 level), at the service platform (30 ft above
island 07 level), and at the top of the island (07 level) showed large amplification relative to
athwartship amplitudes at the base of the island (03 level) at ship speeds above 85 rpm.

The plot of maximum athwartship amplitudes at blade frequency versus ro' Tigure 15a)
revealed the presence of a peak athwartship vibration of the mast at 115 rpm (7.7 cps). The
amplitude profile of athwartship vibration of the island-mast structure at blade frequency
measured at 115 rpm is shown in Figure 16.

Maximum amplitude components of propeller-blade-excited vibration measured on the
Mark 63 Director 2 are given in Figures 17 through 19. The vertical vibration amplitudes at
blade rate measured on the director at the base, pedestal, and eyepieces are plotted versus
shaft rpm in Figure 17. The athwartship vibration amplitudes at the director base, pedestal,
and eyepiece at blade rate versus shaft rpm are shown in Figure 18. The longitudinal blade
rate vibrations of the director are shown in Figure 19. The blade rate amplitudes at the three
locations of the director showed an increase in amplitude from the base to the eyepiece which
was neariy independent of the direction measured. The measured amplitudes for the three
directions and the three gage locations are listed in Table 5 for those frequencies at which
considerable magnification could be observed. These frequencies should be considered as
pertinent to the director.

The maximum longitudinal vibration amplitudes at blade rate and double blade rate
measured on the main propulsion machinery are presented in Figures 20 and 21, respectively.
Maximum longitudinal blade frequency amplitudes are summarized in Table 6, and calcula-

tions of shaft-machinery frequencies are given in Appendix A.
10
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TABLE 2

Underway Measurements of Maximum Vibratory Displacements of Hull, Island, and St
Radar Mast during Free Route (Straight Course) Runs .
Vertical Vibralion Athwartship Vibration
Gage | Shalt | Frequency of Single Gage | Shaft I Frequency of Single
Gage Localion No. | RPM Vibtation | Amplitude {  No. | RPM Vibration | Amplitude

cps mils cps mtls
Hull, Bow HBY 118 1. 0.5 HIA HS 1.6K 1.5
Feame 13 50 3.38F 6.5 1H 5.0BF 28
Hull, Main Deck Hsv, | 118 1. 0.9 - - -
Frame €1, Port -
Hull, Mam Deck HSV, 118 1.4 0.9 - - -
Frame 61, Siarboard
Hull, Main Deck - - - - H6A | 115 1.6H 0.7
Frame 67, Cenleihine 15 5.00F 1.0
Holl, Stemn KV 118 1.4 24 H2A | 11§ 1.64 3.2
Frame 135
Island S7v 118 1.TH 2.6 S2A 18 1.71H 174
(07 tevel) 110 1.38¢F 1.3 HE 1.68F 13.0

| Island 115 N 19 118 7.7M 50 :
{02 level) SIv 110 1.38F 1.2 S1A 105 1.08F 38
Radar Mast - - - A2R 15 1.6M 312
(58 12 above 07 levelt
Radar Mast - - - - AlA-] 118 1.4 28.8
(30 ft above 07 tevel) HE 1.6BF 21.8
*H indicates hull modes, BF indicates blade frequency,

TABLE 3

Underway Measurements of Maximum Vibratory Displacements of Mark 63 Director 2 and
Main Propulsion Machinery during Free Route (Straight Course) Runs

datticat Vidiation Athaatiship Vibration Longitudinal Vibration
. Gage | Shaft |Froquency of | Single Gzge |Shaft | Frequency of | Single Gage | Shaft | Frequency of | Single
Gage Locatien | o Ipew | viratcn  |Acpiitite | No. JRPM | Vibratea [Aeplitude [ No. [ RPM | Vistauon | Amphtude
s miis ps EH €ps wile
0 rer2se 50 3.38F* 1.5 55 3.78F 3.0 55 3.78F 1.2
Sase AV | 88 $38F 0.2 A3A 65 4.3BF 2.0 A3L 65 1.38F 0.4
Fra~a §3 B 7 I8fF 23 iis 1.78F 15.0 115 1.18F 34
Grects: 56 338F HE) 55 3.78F 9.0 0 3.38F 21
Tap Pedestat | A3V | 65 3.38F 0.5 AdA H 4.38F 2.0 AdL 55 1.38F 0.9
Frame 83 1is§ 7.I8F 3.5 115 1.]8F 22.9 115 1.18F 16
Duecice 3 3.78F 5 55 3.18F 320 50 2.38f 1.8
Evepece ASV | 6% 3.38F a0 ASA 85 1.38F 17.0 ASL 65 $3BF i3
Fra-~e 83 15 718F 130 i1s 118F 13.0 105 1.08F 1.4
65 1.38F 1.4
PwustBeanag 1 - - - - - - e es | s 0.7
F eundation ug | r.98f 54
. 3] 4.38F 2.4
ihrysgt _ - - - - - - - T8HIL 85 8.7L \ 1.2
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TABLE 4

Comparison of Experimental and Theoretical Frequencies of Vertical
and Athwartship Modes of Hull Vibration

Mod Experimental* Theoretical**
odes
(17,700-tor: loading) (18,482-ton loading)
Veitical
First 1.9 1.9
Second 3.1 3.2
Third 4.2 4.6
Fourth 5.4 6.0
Fifth 6.6 7.4
Sixth 791 8.6
Athwartship
First z.2 2.0
Second 3.8 4.2
Third 5.8 6.9

* Experimental values determined from anchor drop tests
(e.g., Figures 24 and 25).

** Theoretical values given here were computed by the
electric analog for a heavy displacement and have been
corrected for the loading of the ship during the trial. Com-
puted frequencies and modes for both heavy and light dis-
placement conditions are given in Reference 3,

TExperimental determination of frequency uncertain.
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TABLE 5

Maximum Amplitudes at the Natural Frequencies of the Director

1963* Magnification as 1962**
Location | Direction | Amplitude | Compared to Base | Amplitude
mils 1963 Trial mils
vV 4.5/9/13 4.5/22.5/4.1 -/-/10
Eyepiece A 32/11/13 4/8.5/4 -/-110
L 4.8/7.3/6.4 4/18/2 -/-/19
v 1/0.5/3.5 1 -/-/2
Top A 9/2/22 ! /-/12
Pedestal L 1.3/0.9/4.6 1 -/-/4
vV 1/0.4/2.8 1 -/-/1.5
Base A 8/2/28 1 -/-/12.5
L 1.2/0.4/3.4 1 -/-/2.5
*Amplitudes are given at 3,7, 4.4, and 7.7 cps for all directions.
**Only values for the highest frequency are available,
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The corresponding values obtained (by Philadelphia Naval Shipyard durirg builder’s trials in
May 1962) prior to stiffening of the flexible coupling are included in Table 6 for comparison.
At 65 rpm (8.7-cps double blade frequency), all four of the measured machinery components
vibrated in phkase. At 80 rpm (10.7 c¢ps double blade frequency), the flexible coupling vibrated
out of phase with the other machinery components. At 100 rpm (13.3-cps double blade
frequency), the condenser and flexible coupling vibrated out of phase with respect to the

thrust bearing and thrust-bearing foundations.

MANEUVERING TESTS

-

Tables 7 through 10 summarize the vibration levels of the hull, island, mast, main
propulsion system, and Mark 63 Director 2 which were measured during ship maneuvers. The
maximum vibratory displacements measured during hard turns to port are presented in Table 7.
Maximum vibrations diring hard starboard turns are given in Table 8. Maximum vibrations re-
corded during the crashback mincuver (full speed ahead to full speed astern) are summarized
in Table 9. Table 10 lists the magnification factors of the island-radar mast structure meas-
ured at Positions A2, A1, $2, and S1 in the athwartship and longitudinal direction during
crashback maneuvers and hard turns to port and starboard.

The vibrations measured at various positions during the starboard turns were generally
greater than those measured during port turns by an average factor of 1.3 to 1.4, regardless

of the direction of motion.

ANCHOR DROP TESTS

The anchor drop tests were included to identify hull modes of vibration and to obtain
data from which to estimate hull damping values. The estimation of hull damping coefficients
assumes particular importance in comptter programs for hull response, since presently em-
ployed damping coefficients are based on the average values of damping measured on a
number of ships which vary considerably with the type of ship and moce of vibration.®

The values of logarithmic decrements for the first two vertical hull modes obtained by
visual analysis of oscillogram records were 0.016 at 1.9 cps and 0.038 at 3.1 cps, respectively

Table 11 gives estimates of damping coefficients for the first four vertical hull modes
obtained by the electrical-graphical technique described in Appendix B. The values obtained
by visual analysis of the oscillograph records are included for purposes of comparison.

The principal results of the underway vibration tests are summarized in a vibration
data sheet (Appendix C).

DISCUSSION

Hull vertical resonances were identified at 1.9, 3.1, 4.2, 5.4, and 6.6 cps; the sixth

mode was uncertain. Athwartship hull vibration resonances were identified at 2.2, 3.8, and -
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TABLE 6

Maximum Longitudinal Blade Frequency Vibrations of the Main Propulsion Machinery

Trial Date
May 1962 (Measu-ed by
c , March 1963 Philadelphia Naval Shipyard)
ompanen Shaft Single Shaft Single
rem | Freauency | ampiitude | RPM | Freauency | applitude
cps mils cps mifs
Thrust Bearing 118 1.9 9 118 1.9 10
Thrust-Bearing
Foundation 118 1.9 5.4 118 1.9 5.9
Condenser 118 1.9 8.3 i18 1.9 li
Flexible
Coupling 118 1.9 11.8 118 7.9 13
TABLE 7

Underway Measurements of Maximum Vibratory Displacements of Huli, Island, Radar Mast,
Main Propulsion Machinery, and Mark 63 Director 2 during Hard Port Turn

Veitical Vabialisn Athwastship Vibeation Longitudinal Vibtation
Shaft | Frequency of | Single | Shaft | Frequeacy of [ Single | Shaft| Frequency of T Single
Gage Location RPM | Vibiaticn | Amphitude | RPU | Vibration | Amphitude | RPM | Vibration | Amplitude
cps s cps ls cps ails
Hul! Stem R
Frace 135 107 1.18F 8.5 HE 1.18F Q.5 - - -
Islang
03 tevel i08 1.28F 1.8 100 6.718F 12,5 - - -
‘sfand . - " .
07 tevel i 113 1.58F 7.9 106 i.18F 664 1:0 1.38F 10.5
Ragar ¥ast N .
301t above 07 tever | - - - i3 1.58F 56.1 108 1.18F 2.5
Radar Mast
a9
58 11 above O7 level | = - - 13 1.98F 13.5 9 6.63F 112.0
Thiust-Beanng
Fousdation - - - - - - 118 1.98F 12.2
Thiyst K
Beaning = - - - - - 1i8 1.98F 8.0
Condenser - - - - - - 112 | 18.92BF"* 1.7
Fleubte .
Couphing - - - - - - 110 | 14.728F 15.8
Drrecis: Base , .
Frame 53 93 §.68F 8.5 I'n 6.38F 523 107 7.1BF 1.7
Durector Top
Pedestal Frame §3 99 6.68F 1.5 104 €.98F 63.8 s 1.18¢ 12.0
Directce Eyepiece . . .
Frace 63 s 1.18F 4.5 1133 i.18f t22.7 114 1.68BF 338
“BF indrcales diace frequency.
°*28F indicates doudle blade {r2quency.
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TABLE 9

Underway Measurements of Maximum Vibratory Displacements of Hull, Island, Radar Mast,
Main Propulsion Machinery, and Mark 63 Director 2 during Crashback

Vedtical Vibration Athwartship Vibratiun Longitudina! Vibration
Frequency of Single Frequency of Single Frequency of Stngle
Gage Location Vibiation  |Amplitude | Vibration | Amplitude | Vibration | Amplitude
cps mils cps miis cps mils
pull, Stefn X 30.1 38 217 - -
e .8 12.3 85 1.9 - -
and .8 125 108 19.8 .8 8.0
__gg i:;:::: 07 tevel - - 1.8 555 68 5.1
g: 1:‘3:::; 07 fevel - - 108 32.0 1.8 N6
e | [ w | w
Beamg : - . - 2 15
"Condenser - - - - 9.3 15.0
[ [ [~
Ditector Base. 18 n.7 1.8 310 48 5.4
2;’;;5;’;,‘2‘;3,,,3 | 48 21.0 38 19 9.1 9.8
Diector Eyeriece. 18 3.5 31 145.8 9.1 316
TABLE 10

Magnification Factors of the Island-Radar Mast Structure
during Ship Maneuvers

6 | L Oect Magnification as Compared to Island

’ee scation e [ ashback | Port Tura | Starboard Torn
Radar Mast

A? 58 ft above | Athwartstup 2.7 5.9 6
07 level Longitudinal 2.6 10.7 11.3
Radar Mast

Al | 30 ftabove | Athwartship 21 5.3 5.1
07 level Longitudinal 1.5 2.1 4.5
Island Athwartship Lo 48 5.0

52 07 level Longitudinat 1 i 1
Isfand

§1 03 fevel Athwartship 1 1 1




e
5.8 cps; higher modes were uncertain. Ratios of the higher vertical hull modes to the funda- . i-
mental vertical mode follow the series 1, 1.6, 2.2, 2.8, etc., as contrasted with the series 1,
9. 3, ete. found on a number of surface ships.> A possible explanation for the latter result
may be found in the superstructure geometry of OKINAWA, which is characterized by a lack
of shear continuity over the length of the hull above the hanger deck.

Athwartship vibration amplitudes at the top of the island had large amplification rela-
tive to the base of the island at speeds above 85 rpm, indicating that the island behaves as
a cantilevered beam at high ship speeds. The measured data further indicated that the large
athwartship island motions involved the entire island-radar mast structure. On the basis of
vibration computations of this structure made by the Bureau of Ships, it was recommended
that the topmast on all LPH-2 class ships be stiffened by increasing the inertia at its base
and top and simultancously reducing the plating thickness in order to approximate the weight
of the original topmast.

The measured amplitude profile of the blade frequency component of mast athwartship
vibration at 115 rpm (Figure 16) shows that large motions occurred in the vicinity of the topmast;
in particular. there was relatively large rotation at a nodal point along the topmast. Although
the recommended redesign of the topmast would be expected to mitigate the vibration of the
upper mast, it would not be expected to significantly charge the motion of the entire island-
radar mast structure; no vibration measurements on the redesigned mast structure have been
made. however, to substantiate this.

It should bLe noted that up to the main or hanger deck of OKINAWA, the midship depth
of the hull is 47.2 ft whereas the depth to the flight deck is 76.8 fi. As noted from the mid-
ship hull cross section (see Figure 22), the plating thickness of the superstrecture from the
main deck to the flight deck is able to sustain substsntiai bending and shear loads.
Consequently, empirical equations for estimating the fundamental vertical mode of ships with
superstructures like those of the LPH-2 class should include the inertia of the superstructure
frem the main deck to flight deck in addition to the hull inertia and/or should consider the
effective depth to be greater than the depth to the main deck. It cannot be concluded with
certainty whether the depth up to the flight deck should be vsed to yield a more accurate
prediction of the fundamental vertical frequency from empirical equations (some pe:centage
of this depth would probably be more realistic). It is, however, important that some allow-
ance be made for the dyramic influence of the superstructures on the hull vibrations for ships
with superstructure geometry similar to the LPH-2 class.

Although the estimated hull damping values for OKINAWA lie within the range of
expected values,® the coefficients vary considerably for the first four vertical modes.

Further effort is required in all aspects of ship damping before discrepancies between com-
puted and measured hull response can be minimized. Such effort should include methods of ~
exciting hull vibrations, methcds of determining damping from experimental data, and meth- '
ods of applying damping in computation.
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TABLE 11
Sk ,
Estimates of Hull Damping Coefficients ¢/po for Vertical Vibration of OKINAWA
2 from Analyses of Anchor Drop Data
:
kS Manual:AnaIysw Electronic-Graphical Analysis
Mode Frequency of Oscillograms of Tape Records
0
cps Number of Decay Number of Decay "
Cycles Analyzed* ¢/pes Cycles Analyzed ¢/po
First 1.9 40 0.005 12 0.007
Second 3.1 14 0.012 12 0.008
Third 4.2 - - 9 0.029
Fourth 5.4 - - 8 0.020
*This value refers to the numb2r of cycles for which the decay amplitudes were
approximately linear when plotted on a semilogarithmic graph; ¢/uw = o/m
(see Reference 5).
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CONCLUSIONS AND RECOMMENDATIONS

It is apparent from the analysis of vibration data on OKINAWA that superstructures of
the type found on the LPH-2 class can affect the vibratory response of the ship in two re-
spects which are of interest to the designer. Foremost is the possibility that large vibrations
of island-mast structures can be induced by propeller-excited forces. This may be particularly
true (1) if the island-radar mast structure offers little resistance to motion in a particular di-
rection and./or (2) if the attachment of the island-radar mast to the superstructure in the vicinity
of the island is not sufficiently stiff. This problem assumes particular importance for sensi-
tive electronic equipment mounted on the radar mast and island; if there is excessive vibra-
tion of these structures, the equipment may not operate acceptably.

The second important effect of the superstructure on LPH-2 class ships is its influ-
ence on the vibratory response of the main hull girder. For aircraft carriers, the hangar deck
is usually the main strength deck. There are transverse bulkheads which extend from the
main deck to the flight deck at the extremities of the hull but de not span the length of the
hangar deck. Thus, the superstructure of OKINAWA contributes to the shear stiffness of the
main hull girder but is relatively less stiff over the length of the hangar deck. The practical
importance of this is that the naval architect cannot use the empirical ratios of 1, 2, 3, etc.
for estimating the ratios of the higher flexural hull frequencies to the fundamental frequency
with confidence for ships having superstructures similar to that of the LPH-2 class.

The conclusions from the analysis of vibration data onthe propulsion system are:
1. None of the amplitudes measured on the propulsion machinery is considered excessive.

2. The rapidly increasing amplitudes at propeller blade frequencies in the high power
range are attributed to the close proximity of the frequency of the propeller-exciting forces

to the fundamental natural frequency of the propulsion system (see Appendix A).

3. The longitudinal natural frequency of the propulsion system is about 110 percent of
full power rpm, resulting in the rapid amplitude buildup in the high power range. (Specifica-
tions for longitudinal vibration of propulsion systems (Reference 8) state that the propulsion
system must be free of any longitudinal critical frequency between 50 to 115 percent of full
power rpm.) The important practical result found from vibration analysis of the main propul-
sion system was that replacement of the four-bladed propeller with either a five-bladed or
three-bladed propeller could not be expected to solve the problem of excessive island-radar
mast vibration on OKINAWA.

As a result of the measurement and analysis of vibrations on OKINAWA, the following
recommendations are made:

1. Mast vibrations should be analyzed on various class ships in order to determine what
types of construction are most effective in limiting environmental vibration of electronic

equipment mounted on the masts and superstructure in the vicinity of masts.

»;»- jﬁ"é. . J
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2. Experimental investigations should be supplemented by analytic investigations of
coupled hull-superstructure-radar mast vibrations as, for example, on an electric analog
computer.

3. For future vibration surveys, measurements should be made in the vicinity where masts

are connected to the superstructure in order to obtain improved information on the physical
boundary conditions for dynamic analyses.
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APPENDIX A

SHAFT VIBRATION CALCULATIONS

Calculations of longitudinal shaft vibrations including the influence of the propeller
and machinery components were performed on an electric analog computer to help interpret the
measured results. The mechanical system assumed for the longitudinal shaft vibration calcu-
lations is shown in Figure 23. It consists of six discrete masses and springs connected in
series representing the propeller-shaft-machinery system. Figure 23 also shows the calcu-
lated mode shapes for the first three natural frequencies which were found to be 8.9, 22.1,
and 37.3 cps, respectively.

An examination of longitudinal machinery vibrations shown in Figures 20 and 21 indi-
cate that a resonant condition of the propulsion system is being approached at maximum shaft
rpm. The second-order blade frequency forces excite three distinct resonances of the main
propulsion machinery. The calculated fundamental frequency for the propulsion system of
8.9 cps agrees well with the measured peak at 8.7 cps. The measured resonances at 10.7
and 13.3 cps and the relative phase of the machinery components measured at these frequen-
cies indicate that the propulsion system is more complex than the model assumed for the
calculation. This was not investigated in further detail since the vibration levels of the ma-
chinery components were not excessive and determining the structural characteristics of the

machinery components for a more realistic mathematical model would have required more
extensive analysis.
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APPENDIX B

ELECTRONIC ANALYSIS OF ANCHOR DROP TAPE RECORDS

Estimates of hull damping and modes are increasingly difficult to obtain from oscillo-
gram records for modes above the fundamental hull frequency because of (1) the superposition
of many frequencies w.th decaying amplitudes at relatively low frequencies and (2) the short
length of the records. Thus an ‘‘electronic-graphical’’ analysis was employed to supplement
the information obtained by the manual analysis. This procedure employed tunable narrow
band-pass filtering of the tape records in order to obtain decay signals of the frequency com-
ponents corresponding to the first four hull modes of vertical vibration.

To obtain an estimate of hull damping from magnetic tape records of the anchor drop
test, an electronic filtering technique introduced by Mazet” and employed by Kilcullen® for
ship vibrations was used. This procedure calls for rerecording the transient signal onto a
continuous magnetic tape loop and playing this signal in reverse time sense into a narrow
band-pass filter to avoid shocking the filter. The resonant frequencies contained in the
signal were found by sweeping the frequency of the filter and making a spectrum plot as
shown in Figures 24 and 25. For each frequency of interest, a filtered record was obtained
in which the center frequency of the filter was fixed.

The amplitudes of vibration were plotted on a logarithmic scale versus a linear scale
representing the cycle number for each frequency component of the recorded signal. The pur-
pose of this step was to determine the approximately exponentizl portion of the transient
signal (i.e., the linear portion of the semilogarithmic plot) since only this portion is repre-
sentative of linear damping which is assumed in hull forced response calculations.® T~
damping coefficient ¢/pw used in these calculations may be obtained from the logarithmic

decrements corresponding to the linear portion of the semilogarithmic plot since ¢/pw = 8/n
for small damping.> The results are tabulated in Table 11.
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Figure 24 — Amplitude-Frequency Spectrum of Hull Vertical Vibration
of OKINAWA Recorded by Gage H8V (Frame 13, Main Deck
Centerline) luring Anchor Drop Test

Arrows indicate hull vertical natural frequencies.
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Figure 25 — Amplitude-Frequency Spectrum of Hull Athwartship
Vibration of OKINAWA Recorded by Gage H9A (Frame 13,
Main Deck Centerline) during Anchor Drop Test

Arrows indirate hull athwartship natural frequencies.
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APPENDIX C

VIBRATION DATA SHEET

In order to summarize the principal results jound during the underway vibration tests

on OKINAWA, a summary data sheet is given as Figure 26. Included in this sheet are the

vessel characteristics, test conditions, and test equipment.

The graphs in the chart summarize the vertical and athwartship maximum vibration
levels found at the stern (main deck centerline, Frame 135) and the athwartship and longi-
tudinal maximum vibration levels at two mast positions. The table also summarizes the
maximum vibration levels of (1) the hull at the-bow (Frame 13) and at midships (Frame 67),
(2) two positions on the island, and (3) the thrust bearing and thrust-bearing foundations.

It should be noted that the maximum levels of first-order vibration shown in the graphs were

estimated from average amplitudes, determined by electronic analysis of tape records, since

. first-order amplitudes could not be easily obtained by visual analysis o7 oscillogram records.

Maximum first-order levels were estimated by multiplying the maximum fourth order ampli-

tudes by the ratio of the average amplitudes of first- to fourth-order components.
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